SCIENCE & TECHNOLOGY
The down side to wind power. Wind farms will cause more environmental impact than previously thought.
October 4, 2018 | Leah Burrows | The Harvard Gazette
When it comes to energy production, there’s no such thing as a free lunch, unfortunately.As the world begins its large-scale transition toward low-carbon energy sources, it is vital that the pros and cons of each type are well understood and the environmental impacts of renewable energy, small as they may be in comparison to coal and gas, are considered.
In two papers — published today in the journals Environmental Research Letters and Joule — Harvard University researchers find that the transition to wind or solar power in the U.S. would require five to 20 times more land than previously thought, and, if such large-scale wind farms were built, would warm average surface temperatures over the continental U.S. by 0.24 degrees Celsius.
“Wind beats coal by any environmental measure, but that doesn’t mean that its impacts are negligible,” said David Keith, the Gordon McKay Professor of Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and senior author of the papers. “We must quickly transition away from fossil fuels to stop carbon emissions. In doing so, we must make choices between various low-carbon technologies, all of which have some social and environmental impacts.”
Keith is also professor of public policy at the Harvard Kennedy School.
One of the first steps to understanding the environmental impact of renewable technologies is to understand how much land would be required to meet future U.S. energy demands. Even starting with today’s energy demands, the land area and associated power densities required have long been debated by energy experts.
“The direct climate impacts of wind power are instant, while the benefits of reduced emissions accumulate slowly.”
— David KeithIn 2013 research, Keith described how each wind turbine creates a “wind shadow” behind it where air has been slowed down by the turbine’s blades. Today’s commercial-scale wind farms carefully space turbines to reduce the impact of these wind shadows, but given the expectation that wind farms will continue to expand as demand for wind-derived electricity increases, interactions and associated climatic impacts cannot be avoided.
What was missing from this previous research, however, were observations to support the modeling. Then, a few months ago, the U.S. Geological Survey released the locations of 57,636 wind turbines around the U.S. Using this data set, in combination with several other U.S. government databases, Keith and postdoctoral fellow Lee Miller were able to quantify the power density of 411 wind farms and 1,150 solar photovoltaic plants operating in the U.S. during 2016.
“For wind, we found that the average power density — meaning the rate of energy generation divided by the encompassing area of the wind plant — was up to 100 times lower than estimates by some leading energy experts,” said Miller, who is the first author of both papers. “Most of these estimates failed to consider the turbine-atmosphere interaction. For an isolated wind turbine, interactions are not important at all, but once the wind farms are more than five to 10 kilometers deep, these interactions have a major impact on the power density.”
The observation-based wind power densities are also much lower than important estimates from the U.S. Department of Energy and the Intergovernmental Panel on Climate Change.
For solar energy, the average power density (measured in watts per meter squared) is 10 times higher than wind power, but also much lower than estimates by leading energy experts.
This research suggests that not only will wind farms require more land to hit the proposed renewable energy targets but also, at such a large scale, would become an active player in the climate system.
This research supports more than 10 other studies that observed warming near operational U.S. wind farms. Miller and Keith compared their simulations to satellite-based observational studies in North Texas and found roughly consistent temperature increases.
This research was funded by the Fund for Innovative Climate and Energy Research.
via Large-scale wind power has its down side – Harvard Gazette